

155Mbps SFP Bi-Directional Transceiver, 10km or 20km Reach

1310nm TX / 1550 nm RX & 1550nm TX / 1310 nm RX

Features

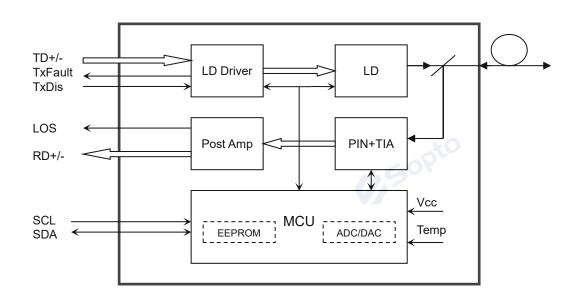
- Up to 155Mbps data-rate
- 1310nm or 1550 FP laser and PIN photo detector for 20km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC (SC) receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with RoHS
- +3.3V single power supply
- SFP support optical Ethernet interface that allows 100 Mbps symmetric speed.
- Compatible with the patch cords ITU G.652D, G.657A and G.657B (in the impact part) and the core/cladding of bidirectional transmission on single-mode optical fiber is 9/125 μm.
- "Hot plug" with LC type optical interface connector.
- Comply with IEEE802.3ah standard, and the allowable range is up to 10km.
- The SFP have automatic gain control so that it can be installed within 5 meters of the maximum range (the maximum attenuation supported according to the sensitivity of the receiver) without using an attenuator. If it can bear it, it can be installed in the range of 5 to 10 meters without using an attenuator.
- Observe the digital diagnosis monitoring interface.
- Comply with CE and FCC certification. Operating case temperature:

Standard: $0 \text{ to } +70^{\circ}\text{C}$

Industrial: -40 to 85°C

Applications

- SDH STM-1, S-1.1, L-1.1, L-1.2
- SONET OC-3 IR1, LR1, LR2
- Other optical links



Description

The SFP-BIDI transceivers are high performance, cost effective modules supporting data-rate of 155Mbps and 20km transmission distance with SMF. The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case	Standard	Т.	0	×C	+70	°C
Temperature	Industrial	Тс	-40	- 20P	85	-0
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc			160	mA

Optical and Electrical Characteristics

Par	ameter	Symbol	Min	Typical	Max	Unit	Notes
	Transmitter						
Contro	Centre Wavelength		1260	1310	1360	nm	1310nm TX
Centre	wavelengui	λε	1530	1550	1570	nm	1550nm TX
Spectral	Width (RMS)	Δλ			4	nm	
Average	Output Power	Pout	-15		-7	dBm	1
Extin	ction Ratio	ER	8			dB	
	Input Swing fferential	$V_{ m IN}$	400		1800	mV	2
	Differential pedance	ZIN	90	100	110	Ω	
TX	Disable		2.0		Vcc	V	
Disable	Enable		0		0.8	V	
TV E14	Fault		2.0		Vcc	V	
1 A Fault	TX Fault Normal		0		0.8	V	
			Rec	eiver			
Receive	er Sensitivity				-34	dBm	3
Receiv	er Overload		-3			dBm	3
LOS	De-Assert	LOSD			-35	dBm	
LO	S Assert	LOSA	-46			dBm	
LOS	Hysteresis	Ψ	1		4	dB	
	output Swing Differential	Vout	400		1800	mV	4
	1.05	High	2.0		Vcc	V	
	LOS				0.8	V	

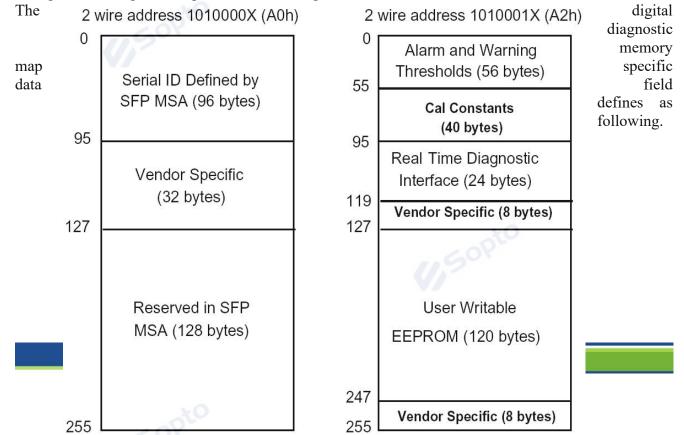
Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, BER $\leq 1 \times 10^{-10}$.
- 4. Internally AC-coupled.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs

Time To Initialize, including Reset of Tx Fault	t_init		Oto	300	ms
Tx Fault Assert Time	t_fault	115	901	100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	VH	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

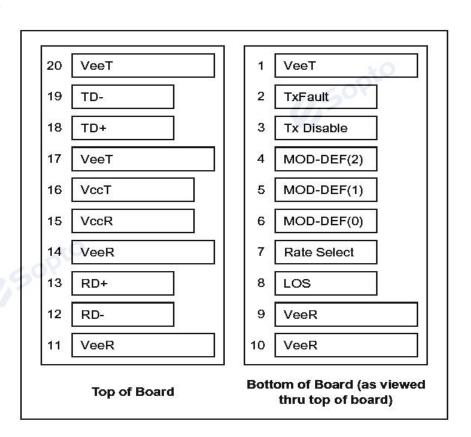

Diagnostics

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	-15 to -7	dBm	±3dB	Internal / External
RX Power	-34 to -3	dBm	±3dB	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.



Pin Definitions

Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3

Add.: 2nd Floor Building D Huafeng International Robot Industrial Park, Xixiang Baoan District Shenzhen

5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	VEER	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VEER	Receiver ground	1	
15	VCCR	Receiver Power Supply	2	
16	VCCT	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VEET	Transmitter Ground	1	

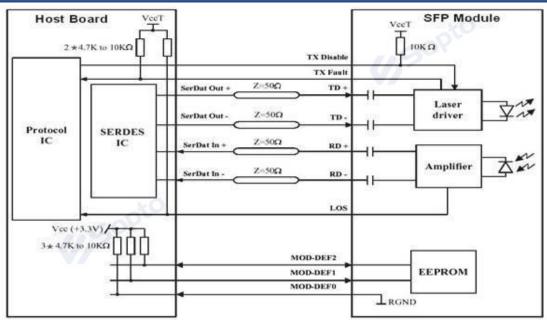
Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

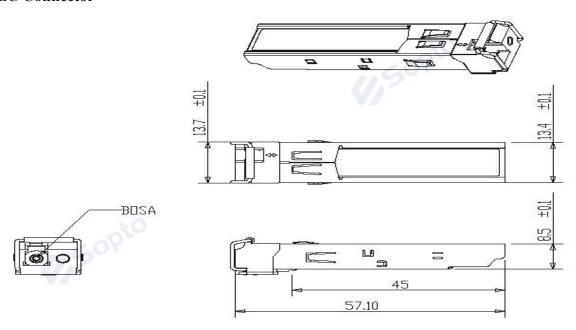
- 1) TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

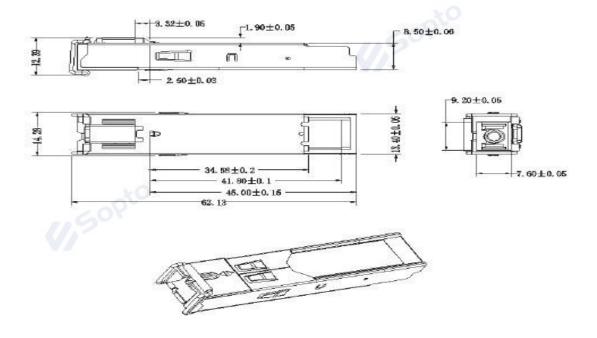

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID
 - Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit



Mechanical Dimensions

A.LC Connector



B.SC Connector

Ordering information

Part Number	Product Description				
1310nm TX / 1550 nm RX					
SPT-PB3503-L10D	1310nm Tx, 155Mbps, LC, 10km, 0°C~+70°C, With DDM				
SPT-PB3503-S10D	1310nm Tx, 155Mbps, SC, 10km, 0°C~+70°C, With DDM				
SPT-PB3503-L20D	1310nm Tx, 155Mbps, LC, 20km, 0°C~+70°C, With DDM				
SPT-PB3503-S20D	1310nm Tx, 155Mbps, SC, 20km, 0°C~+70°C, With DDM				
SPT-PB3503-L10TD	1310nm Tx, 155Mbps, LC, 10km, -40°C~+85°C, With DDM				
SPT-PB3503-L20TD	1310nm Tx, 155Mbps, LC, 20km, -40°C~+85°C, With DDM				
- 0	1550nm TX / 1310 nm RX				
SPT-PB5303-L10D	1550nm Tx, 155Mbps , LC, 10km, 0°C ~ +70°C, With DDM				
SPT-PB5303-S10D	1550nm Tx, 155Mbps , SC, 10km, 0°C ~ +70°C, With DDM				
SPT-PB5303-L20D	1550nm Tx, 155Mbps , LC, 20km, 0°C ~ +70°C, With DDM				
SPT-PB5303-S20D	1550nm Tx, 155Mbps , SC, 20km, 0°C ~ +70°C, With DDM				
SPT-PB5303-L10TD	1550nm Tx, 155Mbps , LC, 10km, 0°C ~ +70°C, With DDM				
SPT-PB5303-L20TD	1550nm Tx, 155Mbps , LC, 20km, 0°C ~ +70°C, With DDM				

Note

1. Default operating case temperature is $0 \sim 70^{\circ}$ C. If you need -40 ~85°C products , please contact us.

2. If you need more customized services, please contact us.

E-mail: info@sopto.com.cn

Web: http://www.sopto.com.cn

