

10Gb/s 10km BiDi XFP Transceiver

Hot Pluggable, Single LC, 1270/1330nm, CWDM DFB, Single mode

Features

- Supports 9.95Gb/s to 11.3Gb/s bit rates
- Hot-pluggable XFP footprint
- Single LC for Bi-directional Transmission
- Maximum link length of 10km
- Built-in 1270/1330 WDM
- Uncooled 1270nm or 1330nm CWDM DFB Laser.
- Power dissipation < 2W
- No Reference Clock required
- Built-in digital diagnostic functions
- Temperature range Standard: 0 to +70°C , Industrial: -40 to +85°C
- Very low EMI and excellent ESD protection
- **RoHS Compliant Part**

Applications

- 10GBASE-LR/LW Ethernet
- SONET OC-192 /SDH
- 1200-SM-LL-L 10G Fibre Channel

Description

SOPTO 10km 2733/3327 Bi-directional 10Gb/s (XFP) transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification. They comply with 10-Gigabit Ethernet 10GBASE-LR/LW per IEEE 802.3ae, SONET OC-192 /SDH and 10G Fibre Channel 1200-SM-LL-L. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the XFP MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
-----------	--------	-----	-----	------

Storage Temperature	T_{ST}	-40	+85	${\mathbb C}$	
Cara Ou anatin a Tanan anatana	T	Standard	0	+70	°C
Case Operating Temperature	I _{IP}	Industrial	-40	+85	C
Supply Voltage	V_{CC3}		-0.5	+4.0	V

Electrical Characteristics (TOP = 0 to 70 °C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	Vcc3	3.13		3.45	V	
Supply Current	Icc3			500	mA	
Module total power	P			2	W	
Transmitter						
Input differential impedance	Rin		100		Ω	1
Differential data input swing	Vin,pp	150		820	mV	
Transmit Disable Voltage	V_{D}	2.0		Vcc	V	
Transmit Enable Voltage	V_{EN}	GND		GND+ 0.8	V	
Transmit Disable Assert Time	T_off			100	ms	
Tx Enable Assert Time	T_on			100	ms	
Receiver			-60	Y		
Differential data output swing	Vout,pp	300	500	850	mV	
Data output rise time	tr			35	ps	2
Data output fall time	tf			35	ps	2
LOS Fault	V _{LOS fault}	Vcc – 0.5		Vcc _{HOST}	V	3
LOS Normal	$V_{LOS\;norm}$	GND		GND+0. 5	V	3
Power Supply Rejection	PSR		See Note	e 4 below		4

Notes

- 1. After internal AC coupling.
- 3.Loss of Signal is open collector to be pulled up with a <math>4.7k-10kohm resistor to 3.15-3.6V. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 4. Per Section 2.7.1. in the XFP MSA Specification.

Optical Parameters(TOP = 0 to $70^{\circ}C$)

Parameter		Symbol	Min	Тур	Max	Unit	Ref.
Transmitter							
Operating Date Ra	te	BR	9.95	~*!	11.3	Gb/s	
Bit Error Rate		BER	// //	POL	10-12		
Maximum Launch Power		P_{MAX}	-6)	-1	dBm	1
Optical Center	1270nmTX	λ	1260	1270	1280	nm	

Wavelength	1330nmTX		1320	1330	1340		
Optical Extinction	Optical Extinction Ratio		3.5	SOP		dB	
Spectral Width		Δλ			1	nm	
Sidemode Supressi	on ratio	SSRmin	30			dB	
Rise/Fall Time (20°	%~80%)	Tr/Tf			50	ps	
Average Launch po Transmitter	wer of OFF	P _{OFF}			-30	dBm	
Tx Jitter	20	Txj	Comp	liant with orequiren	ith each standard		
Optical Eye Mask	otical Eye Mask		IEEE802.3ae				2
Receiver		-					
Operating Date Rat	e	BR	9.95		11.3 Gb/s		
Receiver Sensitivit	y	Sen			-14.5	dBm	2
Maximum Input Po	ower	P _{MAX}	0			dBm	2
Optical Center	1330nmRX	λ_{C}	1320	1330	1340	nm	
Wavelength	1270nmRX	740	1260	1270	1280	11111	
Receiver Reflectance		Rrx			-27	dB	
LOS De-Assert	OS De-Assert				-15	dBm	
LOS Assert	LOS Assert		-30	- *	0	dBm	
LOS Hysteresis		LOS _H	0.5	COL	5	dB	

U,Sopto

The optical power is launched into SMF.
 Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps BER<10⁻¹².

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

1	GND
2	VEE5
3	Mod_Desel
4	Interrupt
5	TX_DIS
6	VCC5
7	GND
8	VCC3
9	VCC3
10	SCL
11	SDA
12	Mod_Abs
13	Mod_Nr
14	RX_LOS
15	GND

	OFO
30	GND
29	TD+
28	TD-
27	GND
26	GND
25	RefCLK-
24	RefCLK+
23	GND
22	VCC2
21	P_Down/RST
20	Vcc2
19	GND
18	RD+
17	RD-
16	GND

Bottom of Board (As view through top of board)

Top of Board

Pin Function Definitions

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Module Ground	1
2		VEE5	Optional –5.2 Power Supply – Not required	
3	LVTTL-I	Mod-Desel	Module De-select; When held low allows the module to respond to 2-wire serial interface commands	
4	LVTTL-O	Interrupt	Interrupt (bar); Indicates presence of an important condition which can be read over the serial 2-wire interface	2
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6		VCC5	+5 Power Supply	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL- I/O	SDA	Serial 2-wire interface data line	2
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the module.	2
13	LVTTL-O	Mod_NR	Module Not Ready;	2

14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1
16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not required	
21	LVTTL-I	P_Down/R	Power Down; When high, places the module in the low power stand-by mode and on the falling edge of P_Down initiates a module reset	
21		ST	Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	Module Ground	1
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the host board – Not required	3
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on the host board – Not required	3
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

Note

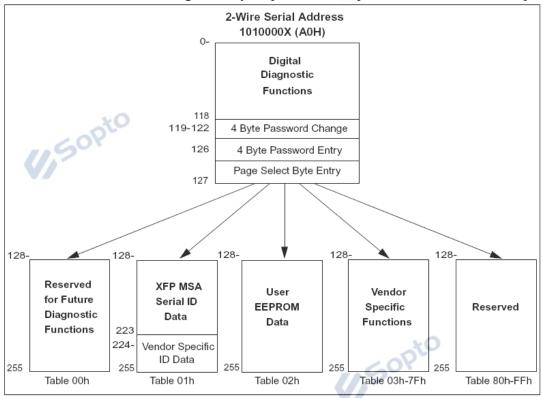
- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.45V.
- 3. A Reference Clock input is not required.

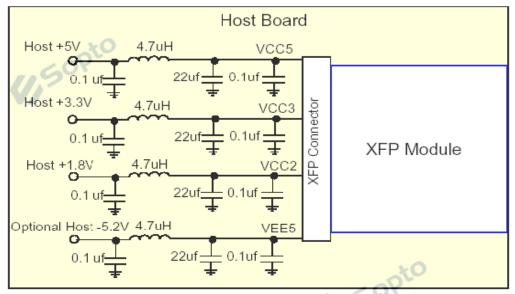
Digital Diagnostic Functions

As defined by the XFP MSA 1, FTTX's XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- ✓ Transceiver temperature
- ✓ Laser bias current
- ✓ Transmitted optical power
- ✓ Received optical power
- Transceiver supply voltage

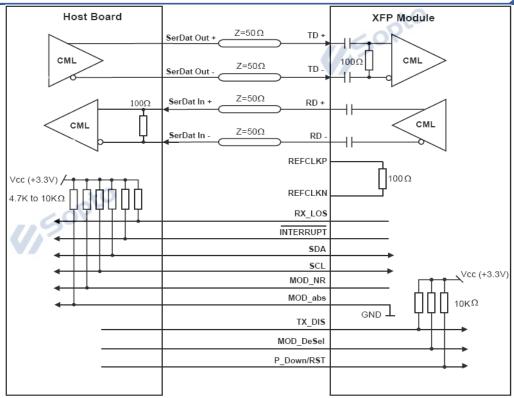
It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.


The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial



protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the XFP MSA Specification.


Recommended Circuit

Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Mechanical Dimensions

Ordering information

Part Number	Product Description
SPT-XB2733TG-L10	Transceiver XFP Single Fiber BIDI 1270nmTx/1330nmRx 10G LC Interface 10km with DDM Commercial Temperature

Add.: 2nd Floor Building D Huafeng International Robot Industrial Park, Xixiang Baoan District Shenzhen

SPT-XB3327TG-L10	Transceiver XFP Single Fiber BIDI 1330nmTx/1270nmRx 10G LC Interface 10km with DDM Commercial Temperature
SPT-XB2733TG-L10T	Transceiver XFP Single Fiber BIDI 1270nmTx/1330nmRx 10G LC Interface 10km with DDM Industrial Temperature
SPT-XB3327TG-L10T	Transceiver XFP Single Fiber BIDI 1330nmTx/1270nmRx 10G LC Interface 10km with DDM Industrial Temperature

Note: If you need more customized services, please contact us.

E-mail: info@sopto.com.cn

Web: http://www.sopto.com.cn

USopto

