

SPT-QSFP+LR4

40Gb/s 10km or 20km QSFP+ Transceiver

Hot Pluggable, Duplex LC Connector, Single mode

Features Standard

- 4 CWDM lanes MUX/DEMUX design
- Up to 11.2Gbps per channel bandwidth
- Aggregate bandwidth of > 40Gbps
- Duplex LC connector
- Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-LR4 Standard
- QSFP MSA compliant
- Up to 10 km or 20km transmission
- Compliant with QDR/DDR Infiniband data rates
- Single +3.3V power supply operating
- Temperature range 0° C to 70° C
- RoHS Compliant Part

Applications

- Rack to rack
- Data centers Switches and Routers
- Metro networks
- Switches and Routers
- 40G BASE-LR4 Ethernet Links

Description

SPT-QSFP+LR4 is a transceiver module designed for 10km or 20km optical communication applications. The design is compliant to 40GBASE-LR4 of the IEEE P802.3ba standard. The module converts 4 inputs channels (ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G694.2. It contains a duplex LC connector for the

optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

The module operates from a single +3.3V power supply and LVCMOS/LVTTL global control signals such as Module Present, Reset, Interrupt and Low Power Mode are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals and to obtain digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The TQPL10D is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40	p	+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	I _{CC}			1000	mA
Power Dissipation	PD			3.5	W

Electrical Characteristics (TOP = 0 to 70 °C, VCC = 3.13 to 3.47 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Data Rate per Channel	-	10.3125	11.2	Gbps		
Power Consumption		-	2.5	3.5	W	
Supply Current	Icc		0.75	1.0	А	
Control I/O Voltage-High	VIH	2.0	12	Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Inter-Channel Skew	TSK			150	Ps	

Sopto 🕫	longan Group Shenzhen Sopto Technology Co.Limited
---------	---

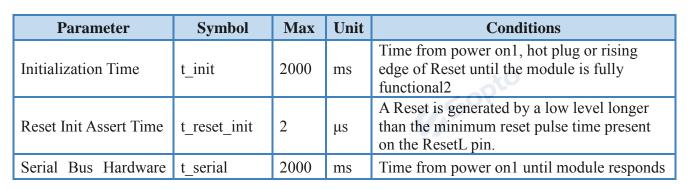
RESETL Duration			10	20	Us	
RESETL De-assert time			6	100	ms	
Power On Time				100	ms	
Transmitter						
Single Ended Output Voltage Tolerance		0.3		4	V	1
Common mode Voltage Tolerance		15			mV	
Transmit Input Diff Voltage	VI	150		1200	mV	
Transmit Input Diff Impedance	ZIN	85	100	115		
Data Dependent Input Jitter	DDJ		0.3		UI	
Receiver					-	
Single Ended Output Voltage Tolerance		0.3		4	V	
Rx Output Diff Voltage	Vo	370	600	950	mV	
Rx Output Rise and Fall Voltage	Tr/Tf			35	ps	1
Total Jitter	TJ		0.3		UI	

Note:

1. $20 \sim 80\%$

Optical Parameters(**TOP** = 0 to 70 °**C**, **VCC** = 3.0 to 3.6 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
	L0	1264.5	1271	1277.5	nm	
	L1	1284.5	1291	1297.5	nm	
Wavelength Assignment	L2	1304.5	1311	1317.5	nm	
e e e obto	L3	1324.5	1331	1337.5	nm	
Side-mode Suppression Ratio	SMSR	30	-	-	dB	
Total Average Launch Power	РТ	-	-	8.3	dBm	
Assessed Laws In Descent and Laws		-7	-	2.3	dD	10k m
Average Launch Power, each Lane		-3	-	4.5	dBm	20k m
Difference in Launch Power between any two Lanes (OMA)		-	-	6.5	dB	
Optical Modulation Amplitude, each Lane	OMA	-4		+3.5	dBm	
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-4.8	SOP		dBm	
TDP, each Lane	TDP			2.3	dB	


Hongan Group | Shenzhen Sopto Technology Co.Limited

Extinction Ratio ER 3.5 - - Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3} {0.25, 0.4, 0.45, 0.25, 0.28, 0.4} - 20	dB dB dBm	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3} 0.4, 0.45, 0.25, 0.25, 0.28, 0.4}		
	dDm	
AverageLaunchPowerOFFPoff-30Transmitter, each Lane-30	uDill	
Relative Intensity NoiseRin-128C	dB/H Z	1
Optical Return Loss Tolerance 12	dB	
Receiver		
Damage Threshold THd 3.3	dBm	1
Average Power at Receiver Input, each LaneR-13.72.3	dBm	
Receiver Power (OMA), each Lane3.5	dB	
Receive Electrical 3 dB upper Cut off Frequency, each Lane12.3	GHz	
RSSI Accuracy -2 2	dB	
Receiver Reflectance Rrx -26	dB	
Receiver Power (OMA), each Lane - 3.5	dBm	
Stressed Receiver Sensitivity in OMA, each Lane9.9	dBm	
Receiver Sensitivity, each Lane SR11.5	dBm	
Difference in Receive Power between any two Lanes (OMA)7.5	dB	
Receive Electrical 3 dB upper Cutoff Frequency, each Lane12.3	GHz	
LOS De-Assert LOS _D -15	dBm	
LOS Assert LOS _A -30	dBm	
LOS Hysteresis LOS _H 0.5	dB	

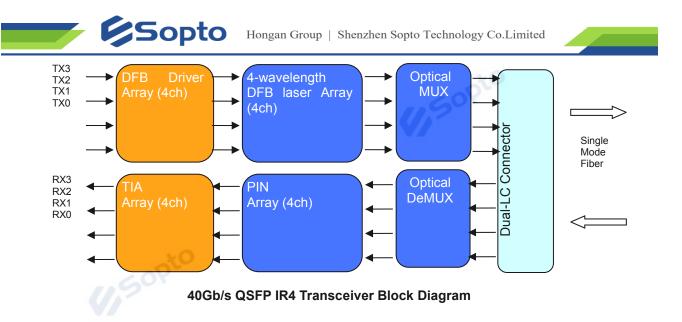
Note

1. 12dB Reflection

Timing for Soft Control and Status Functions

Ready Time				to data transmission over the 2-wire serial bus
Monitor Data Ready Time	t_data	2000	ms	Time from power on1 to data not ready, bit 0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until the module is fully functional2
LPMode Assert Time	ton_LPMode	100	μs	Time from assertion of LPMode (Vin:LPMode =Vih) until module power consumption enters lower Power Level
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until Vout:IntL = Vol
IntL Deassert Time	toff_IntL	500	μs	toff_IntL 500 μs Time from clear on read3 operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
Flag Assert Time	ton_flag	200	ms	Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set4 until associated IntL assertion is inhibited
Mask De-assert Time	toff_mask	100	ms	Time from mask bit cleared4 until associated IntlL operation resumes
ModSelL Assert Time	ton_ModSel L	100	μs	Time from assertion of ModSelL until module responds to data transmission over the 2-wire serial bus
ModSelL Deassert Time	toff_ModSel L	100	μs	Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set 4 until module power consumption enters lower Power Level
Power_over-ride or Power-set De-assert Time	toff_Pdown	300	ms	Time from P_Down bit cleared4 until the module is fully functional3

Note:


1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.

2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 de-asserted.

3. Measured from falling clock edge after stop bit of read transaction.

4. Measured from falling clock edge after stop bit of write transaction.

Transceiver Block Diagram

Bottom Side

Diagram of Host Board Connector Block Pin Numbers and Name

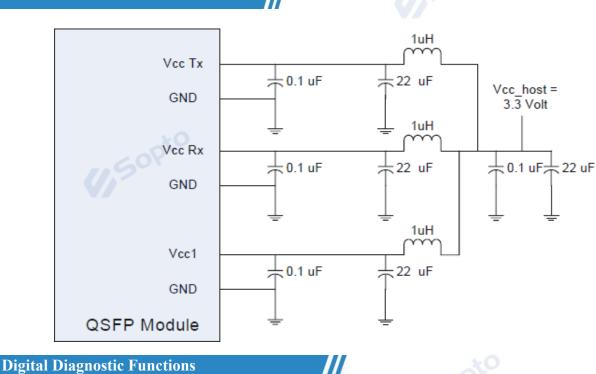
Top Side

Pin Description

Pin	Symbol	Name/Description	NOTE
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	

Hongan Group | Shenzhen Sopto Technology Co.Limited

	• •		
9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Transmitter Ground (Common with Receiver Ground)	
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4n	Receiver Inverted Data Output	1
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	
29	VccTx	3.3V power supply transmitter	2
30	Vcc1	3.3V power supply	2
31	LPMode	Low Power Mode	
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Output	
35	GND	Transmitter Ground (Common with Receiver Ground)	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1
Notes:			


Notes:

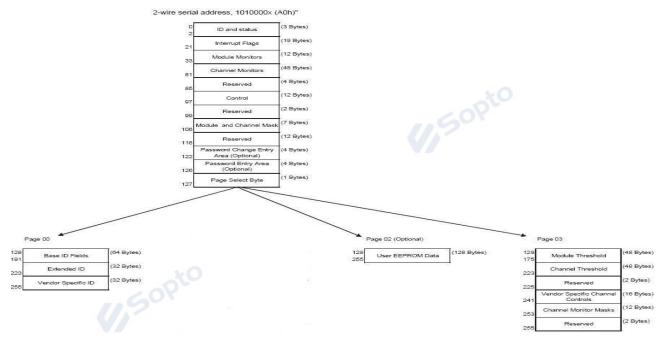
1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Recommended Circuit

Sopto

SOPTO SPT-QSFP+LR4 supports the 2-wire serial communication protocol as defined in the QSFP+ MSA, which allows real-time access to the following operating parameters:


- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range. The operating and diagnostics information is monitored and reported by a Digital Diagnostics. Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

This clause defines the Memory Map for QSFP transceiver used for serial ID, digital monitoring and certain control functions. The interface is mandatory for all QSFP devices. The memory map has been

changed in order to accommodate 4 optical channels and limit the required memory space. The structure of the memory is shown in Figure 2 -QSFP+ Memory Map. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, e.g. Interrupt Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed. For example, in Figure 29 upper pages 01 and 02 are optional. Upper page 01 allows implementation of Application Select Table, and upper page 02 provides user read/write space. The lower page and upper pages 00 and 03 are always implemented. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a "one-time-read" for all data related to an interrupt situation. After an Interrupt, IntL, has been asserted, the host can read out the flag field to determine the effected channel and type of flag.

For more detailed information including memory map definitions, please see the QSFP+ MSA Specification.

Figure2.QSFP Memory Map

Lower Memory Map

The lower 128 bytes of the 2-wire serial bus address space, see Table 1, is used to access a variety of measurements and diagnostic functions, a set of control functions, and a means to select which of the various upper memory map pages are accessed on subsequent reads. This portion of the address space is always directly addressable and thus is chosen for monitoring and control functions that may need to be repeatedly accessed. The definition of identifier field is the same as page 00h Byte 128.

rabic 1— Lower Memory Map					
Byte Address	Description	Туре			
0	Identifier (1 Byte)	Read-Only			
1-2	Status (2 Bytes)	Read-Only			
3-21	Interrupt Flags (19 Bytes)	Read-Only			
22-33	Module Monitors (12 Bytes)	Read-Only			
34-81	Channel Monitors (48 Bytes)	Read-Only			
82-85	Reserved (4 Bytes)	Read-Only			
86-97	Control (12 Bytes)	Read/Write			
98-99	Reserved (2 Bytes)	Read/Write			
100-106	Module and Channel Masks (7 Bytes)	Read/Write			
107-118	Reserved (12 Bytes)	Read/Write			
119-122	Password Change Entry Area (optional) (4 Bytes)	Read/Write			
123-126	Password Entry Area (optional) (4 Bytes)	Read/Write			
127	Page Select Byte	Read/Write			

Table 1— Lower Memory Map

Status Indicator Bits

The Status Indicators are defined in Table 2.

Table 2 — Status Indicators

Byte	Bit	Name	Description
1	All	Reserved	
2	7	Reserved	
	6	Reserved	
	5	Reserved	
	4	Reserved	
	3	Reserved	
	2	Reserved	
	1	IntL	Digital state of the IntL interrupt output pin.
	0		Indicates transceiver has not yet achieved power up and m
	0	Data_Not_Ready	onitor datais not ready. Bit remains high until data is rea dy to be read at which time the device sets the bit low.

Interrupt Flags

Sopto

A portion of the memory maps (Bytes 3 through 21), form a flag field. Within this field, the status of LOS and Tx Fault as well as alarms and warnings for the various monitored items is reported. For normal operation and default state, the bits in this field have the value of 0b. For the defined conditions of LOS, Tx Fault, module and channel alarms and warnings, the appropriate bit or bits are set, value = 1b. Once asserted, the bits remained set (latched) until cleared by a read operation that includes the affected bit or reset by the ResetL pin. The Channel Status Interrupt Flags are defined in Table 3.

Byte	Bit	Name	Description	
3	7	L-Tx4 LOS	Latched TX LOS indicator, channel 4 (Not support)	
	6	L-Tx3 LOS	Latched TX LOS indicator, channel 3 (Not support)	
	5	L-Tx2 LOS	Latched TX LOS indicator, channel 2 (Not support)	
	4	L-Tx1 LOS	Latched TX LOS indicator, channel 1 (Not support)	
	3	L-Rx4 LOS	Latched RX LOS indicator, channel 4	
	2	L-Rx3 LOS	Latched RX LOS indicator, channel 3	
	1	L-Rx2 LOS	Latched RX LOS indicator, channel 2	
	0	L-Rx1 LOS	Latched RX LOS indicator, channel 1	
4	7-4	Reserved	11.20	
	3	L-Tx4 Fault	Latched TX fault indicator, channel 4	
	2	L-Tx3 Fault	Latched TX fault indicator, channel 3	
	1	L-Tx2 Fault	Latched TX fault indicator, channel 2	
	0	L-Tx1 Fault	Latched TX fault indicator, channel 1	
5	All	Reserved		

Table 3 — Channel Status Interrupt Flags

The Module Monitor Interrupt Flags are defined in Table 4.

Table 4 — Module Monitor Interrupt Flags

Byte	Bit	Name	Description	
6	7	L-Temp High Alarm Latched high temperature alarm		
	6	L-Temp Low Alarm	Latched low temperature alarm	
	5	L-Temp High Warning	Latched high temperature warning	
	4	L-Temp Low Warning Latched low temperature warning		
	3-0	Reserved		
7	7	L-Vcc High Alarm Latched high supply voltage alarm		
	6	L-Vcc Low Alarm	Latched low supply voltage alarm	
	5	L-Vcc High Warning	Latched high supply voltage warning	
	4	L-Vcc Low Warning	Latched low supply voltage warning	
	3-0	Reserved		

The Channel Monitor Interrupt Flags are defined in Table 5

Table 5 — Channel Monitor Interrupt Flags

Byte	Bit	Name	Description	
9	7	L-Rx1 Power High Alarm	Latched high RX power alarm, channel 1	
	6	L-Rx1 Power Low Alarm	Latched low RX power alarm, channel 1	
	5	L-Rx1 Power High Warning	Latched high RX power warning, channel 1	
	4	L-Rx1 Power Low Warning	Latched low RX power warning, channel 1	
	3	L-Rx2 Power High Alarm	Latched high RX power alarm, channel 2	
	2	L-Rx2 Power Low Alarm	Latched low RX power alarm, channel 2	
	1	L-Rx2 Power High Warning	Latched high RX power warning, channel 2	
	0	L-Rx2 Power Low Warning	Latched low RX power warning, channel 2	
10	7	L-Rx3 Power High Alarm	Latched high RX power alarm, channel 3	
	6	L-Rx3 Power Low Alarm	Latched low RX power alarm, channel 3	
	5	L-Rx3 Power High Warning	Latched high RX power warning, channel 3	
	4	L-Rx3 Power Low Warning	Latched low RX power warning, channel 3	
	3	L-Rx4 Power High Alarm	Latched high RX power alarm, channel 4	
	2	L-Rx4 Power Low Alarm	Latched low RX power alarm, channel 4	
	1	L-Rx4 Power High Warning	Latched high RX power warning, channel 4	
	0	L-Rx4 Power Low Warning	Latched low RX power warning, channel 4	
11	7	L-Tx1 Bias High Alarm	Latched high TX bias alarm, channel 1	
	6	L-Tx1 Bias Low Alarm	Latched low TX bias alarm, channel 1	
	5	L-Tx1 Bias High Warning	Latched high TX bias warning, channel 1	
	4	L-Tx1 Bias Low Warning	Latched low TX bias warning, channel 1	
	3	L-Tx2 Bias High Alarm	Latched high TX bias alarm, channel 2	
	2	L-Tx2 Bias Low Alarm	Latched low TX bias alarm, channel 2	
	1	L-Tx2 Bias High Warning	Latched high TX bias warning, channel 2	
	0	L-Tx2 Bias Low Warning	Latched low TX bias warning, channel 2	
12	7	L-Tx3 Bias High Alarm	Latched high TX bias alarm, channel 3	
	6	L-Tx3 Bias Low Alarm	Latched low TX bias alarm, channel 3	
	5	L-Tx3 Bias High Warning	Latched high TX bias warning, channel 3	
	4	L-Tx3 Bias Low Warning	Latched low TX bias warning, channel 3	
	3	L-Tx4 Bias High Alarm	Latched high TX bias alarm, channel 4	
	2	L-Tx4 Bias Low Alarm	Latched low TX bias alarm, channel 4	
	1	L-Tx4 Bias High Warning	Latched high TX bias warning, channel 4	
	0	L-Tx4 Bias Low Warning	Latched low TX bias warning, channel 4	

	- 6	Sopto Hongan Group	Shenzhen Sopto Technology Co.Limited	
13	7	L-Tx1 Power High Alarm	Latched high TX Power alarm, channel 1	
	6	L-Tx1 Power Low Alarm	Latched low TX Power alarm, channel 1	
	5	L-Tx1 Power High Warning	Latched high TX Power warning, channel 1	
	4	L-Tx1 Power Low Warning	Latched low TX Power warning, channel 1	
	3	L-Tx2 Power High Alarm	Latched high TX Power alarm, channel 2	
	2	L-Tx2 Power Low Alarm	Latched low TX Power alarm, channel 2	
	1	L-Tx2 Power High Warning	Latched high TX Power warning, channel 2	
	0	L-Tx2 Power Low Warning	Latched low TX Power warning, channel 2	
14	7	L-Tx3 Power High Alarm	Latched high TX Power alarm, channel 3	
	6	L-Tx3 Power Low Alarm	Latched low TX Power alarm, channel 3	
	5	L-Tx31 Power High Warning	Latched high TX Power warning, channel 3	
	4	L-Tx3 Power Low Warning	Latched low TX Power warning, channel 3	
	3	L-Tx4 Power High Alarm	Latched high TX Power alarm, channel 4	
	2	L-Tx4 Power Low Alarm	Latched low TX Power alarm, channel 4	
	1	L-Tx4 Power High Warning	Latched high TX Power warning, channel 4	
	0	L-Tx4 Power Low Warning	Latched low TX Power warning, channel 4	
15-16	All	Reserved	Reserved channel monitor flags, set 4	
17-18	All	Reserved	Reserved channel monitor flags, set 5	
19-20	All	Reserved	Reserved channel monitor flags, set 6	
21	All	Reserved		

Module Monitors

Real time monitoring for the QSFP module include transceiver temperature, transceiver supply voltage, and monitoring for each transmit and receive channel. Measured parameters are reported in 16-bit data fields, i.e., two concatenated bytes. These are shown in Table 6.

Table 6—**Module Monitoring Values**

Byte	Bit	Name	Description		
22	All	Temperature MSB	Internally measured module temperature		
23	All	Temperature LSB			
24-25	All	Reserved			
26	All	Supply Voltage MSB	Internally measured module supply voltage		
27	All	Supply Voltage LSB			
28-33	All	Reserved	20		
Channel M	Channel Monitoring				

Channel Monitoring

Real time channel monitoring is for each transmit and receive channel and includes optical input power Tx bias current and Tx output Power. Measurements are calibrated over vendor specified

operating temperature and voltage and should be interpreted as defined below. Alarm and warning threshold values should be interpreted in the same manner as real time 16-bit data. Table 7 defines the Channel Monitoring.

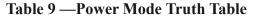
Byte	Bit	Name	Description	
34	All	Rx1 Power MSB	Internally measured RX input power, channel 1	
35	All	Rx1 Power LSB		
36	All	Rx2 Power MSB	Internally measured RX input power, channel 2	
37	All	Rx2 Power LSB		
38	All	Rx3 Power MSB	Internally measured RX input power, channel 3	
39	All	Rx3 Power LSB		
40	All	Rx4 Power MSB	Internally measured RX input power, channel 4	
41	All	Rx4 Power LSB		
42	All	Tx1 Bias MSB	Internally measured TX bias, channel 1	
43	All	Tx1 Bias LSB		
44	All	Tx2 Bias MSB	Internally measured TX bias, channel 2	
45	All	Tx2 Bias LSB		
46	All	Tx3 Bias MSB	Internally measured TX bias, channel 3	
47	All	Tx3 Bias LSB	0.2	
48	All	Tx4 Bias MSB	Internally measured TX bias, channel 4	
49	All	Tx4 Bias LSB		
50	All	Tx1 Power MSB	Internally measured TX output power, channel 1	
51	All	Tx1 Power LSB		
52	All	Tx2 Power MSB	Internally measured TX output power, channel 2	
53	All	Tx2 Power LSB		
54	All	Tx3 Power MSB	Internally measured TX output power, channel 3	
55	All	Tx3 Power LSB		
56	All	Tx4 Power MSB	Internally measured TX output power, channel 4	
57	All	Tx4 Power LSB		
58-65			Reserved channel monitor set 4	
66-73			Reserved channel monitor set 5	
74-81			Reserved channel monitor set 6	

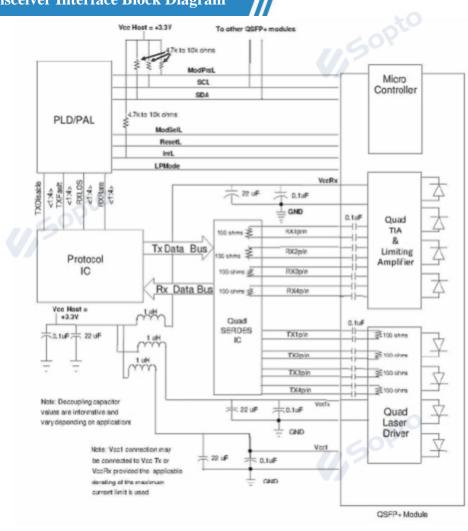
Table 7 — Channel Monitoring Values

Control Bytes

Control Bytes are defined in Table 8					
Byte	Bit	Name	able 8 — Control Bytes Description		
86	7-4	Reserved			
Add.: 2nd Floor Building D Huafeng International Robot Industrial Park, Xixiang Baoan District Shenzhen Tel: (0086) 755 23018340 Fax: (0086) 755 26053449 Email: info@sopto.com.cn					

			Read/write bit that allows software disable of	
	3	Tx4_Disable	transmitters.1	
	2	Tx3_Disable	Read/write bit that allows software disable of transmitters.1	
	1	Tx2_DisableRead/write bit that allows software disable of transmitters.1		
	0	Tx1_Disable	Read/write bit that allows software disable of transmitters.1	
87	7	Rx4_Rate_Select	Software Rate Select, Rx channel 4 msb	
	6	Rx4_Rate_Select	Software Rate Select, Rx channel 4 lsb	
	5	Rx3_Rate_Select	Software Rate Select, Rx channel 3 msb	
	4	Rx3_Rate_Select	Software Rate Select, Rx channel 3 lsb	
	3	Rx2_Rate_Select	Software Rate Select, Rx channel 2 msb	
	2	Rx2_Rate_Select	Software Rate Select, Rx channel 2 lsb	
	1	Rx1_Rate_Select	Software Rate Select, Rx channel 1 msb	
	0	Rx1_Rate_Select	Software Rate Select, Rx channel 1 lsb	
88	7	Tx4_Rate_Select	Software Rate Select, Tx channel 4 msb (Not support)	
	6	Tx4_Rate_Select	Software Rate Select, Tx channel 4 lsb (Not support)	
	5	Tx3_Rate_Select	Software Rate Select, Tx channel 3 msb (Not support)	
	4 Tx3_Rate_Select Software Rate Select, Tx channel 3 lst		Software Rate Select, Tx channel 3 lsb (Not support)	
	3	Tx2_Rate_Select	Software Rate Select, Tx channel 2 msb (Not support)	
	2	Tx2_Rate_Select	Software Rate Select, Tx channel 2 lsb (Not support)	
	1	Tx1_Rate_Select Software Rate Select, Tx channel 1 msb (Not support		
	0	Tx1_Rate_Select	Software Rate Select, Tx channel 1 lsb (Not support)	
89	All	Rx4_Application_Select	Software Application Select per SFF-8079, Rx Channel 4	
90	All	Rx3_Application_Select	Software Application Select per SFF-8079, Rx Channel 3	
91	All	Rx2_Application_Select	Software Application Select per SFF-8079, Rx Channel 2	
92	All	Rx1_Application_Select	Software Application Select per SFF-8079, Rx Channel 1	
93	2-7	Reserved		
	1	Power_set	Power set to low power mode. Default 0.	
	0	Power_over-ride	Override of LPMode signal setting the power mode with software.	
94	All	Tx4_Application_Select	Software Application Select per SFF-8079, Tx Channel 4 (Not support)	
95	All	Tx3_Application_Select	Software Application Select per SFF-8079, Tx Channel 3 (Not support)	
96	All	Tx2_Application_Select	Software Application Select per SFF-8079, Tx Channel 2 (Not support)	
97	All	Tx1_Application_Select	Software Application Select per SFF-8079, Tx Channel 1 (Not support)	
98-99	All	Reserved		

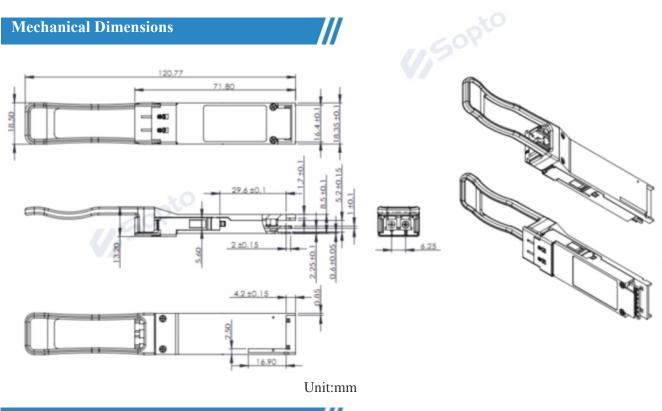

1. Writing "1" disables the laser of the channel.


LPMode

The LPMode pin shall be pulled up to Vcc in the QSFP module. This function is affected by the LPMode pin and the combination of the Power_over-ride and Power_set software control bits (Address A0h, byte 93 bits 0,1).

The module has two modes a low power mode and a high power mode. When the module is in a low power mode it has a maximum power consumption of 1.5W. This protects hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted. A truth table for the relevant configurations of the LPMode and the Power_over-ride and Power_set are shown in Table 9. At Power up, the Power_over-ride and Power_set bits shall be set to 0.

LPMode	Power_Over-ride Bit	Power_set Bit	Module Power Al owed
1	0	Х	Low Power
0	0	Х	High Power
Х	1	1	Low Power
Х	1	0	High Power



Add.: 2nd Floor Building D Huafeng International Robot Industrial Park, Xixiang Baoan District Shenzhen Tel: (0086) 755 23018340 | Fax: (0086) 755 26053449 | Email: info@sopto.com.cn

Host - Transceiver Interface Block Diagram

Ordering information

Ordering information	de la companya
	SOP
Part Number	Product Description
SPT-QSFP+LR4	40Gb/s QSFP+ 10km Optical Transceiver, 0 to 70°C,DDM
SPT-QSFP+LR4	40Gb/s QSFP+ 20km Optical Transceiver, 0 to 70°C,DDM

Note: If you need more customized services, please contact us.

E-mail: info@sopto.com.cn

Web : http://www.sopto.com.cn